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Transformations of radiation-matter interaction parameters that result in similar radiation 
distributions are referred to as similarity relations. A class of similarity relations for 
monoenergetic, or single energy group, neutral particle transport is derived from fundamental 
transport considerations. One specific relation, defined as the moments similarity relation, is 
examined as a biased sampling method for Monte Carlo simulations. The moments similarity 
relation most elfectively reduces computation time for simulations involving deep penetration 
and highly forward peaked scattering. The method involves substantial reductions in the total 
scattering cross section that can be employed with greatest accuracy away from sources 
and boundaries. A specific case study for diffuse transmittance and reflectance in a highly 
scattering medium is presented to illustrate the method and evaluate its computational 
effectiveness. 0 1989 Academic Press. Inc. 

The technique of Monte Carlo particle transport simulation is routinely applied 
in calculations of the absorption of energy or the spatial or angular distribution of 
particles traversing an attenuating medium. This technique has a wide scope of 
applications, including ionizing radiation absorption, shielding, and dosimetry, 
reactor physics, and atmospheric physics. A comprehensive list of references to the 
fundamental work in these areas, including both charged and neutral particles, is 
given by Carter and Cashwell [ 11. 

Recently, reports of Monte Carlo simulations of light transport have appeared in 
the medical physics literature. These simulations involve imaging [2], the absorp- 
tion of light energy in tissues [3], or the determination of fundamental interaction 
parameters [4]. The few published measurements of angular scattering data 
indicate that visible light scattering in blood and soft tissues is highly forward 
peaked [4, 51. Also, interaction mean free paths in tissue are typically 10-100 pm, 
with scattering dominating absorption [S]. A tissue thickness of several centimetres 
may thus be hundreds or thousands of mean free paths. 

A simulation of light transport in such tissue is therefore prohibitively lengthy for 
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scoring, with even minimal accuracy, the spatial or angular distribution of the 
transmitted beam. These transmitted quantities might, for example, be sought in 
image analyses of breast transillumination [2, 61, or in radiation dosimetry for 
photodynamic therapy [7-91 or laser surgery [lo]. 

Considerable effort has focussed on developing mathematical techniques to 
reduce simulation time by reducing the variance in scored quantities. The most 
generally useful of these biasing techniques are splitting and roulette [ 11, the 
exponential transform [ll, 123, and biasing either the source or the angular 
scattering distribution [13, 141. We have found that no combination of existing 
biasing techniques is sufficiently powerful to enable accurate scoring of transmitted 
quantities in media that may be more than hundreds of mean free paths thick. 

For such simulations one approach could be to modify the interaction 
parameters of the medium such that the scored quantities are not significantly 
altered but the effective mean free path is greatly increased. This can be accom- 
plished by using the exponential transformation or by carefully invoking scattering 
similarity relations [15]. While the exponential transformation is useful, we have 
found that for accurate results, its single parameter should generally lie between 
0.75 and 1.0, representing typically only a 30% stretch in mean free path. 

The use of similarity relations in Monte Carlo simulations is not a conventional 
biasing technique since similarity relations violate the biasing principle of altering 
probabilities while conserving expectations of interactions at each point in the 
medium. Similarity relations are discussed at several points in the books by van de 
Hulst [ 151. 

In this paper, a class of similarity relations, designed to quicken Monte Carlo 
simulations involving anisotropic scattering in very thick media, is derived from 
fundamental neutral particle transport considerations. These relations are assessed 
in a case typical of light propagation in tissue. 

THEORY 

In a previous paper [ 173, we described the replacement of a continuous angular 
scattering probability density function (PDF) by a discrete PDF, according to the 
matching of moments. The logic of that replacement technique suggests a more 
general substitution, in which both the angular scattering PDF and the scattering 
cross section, Zs, are altered through a similarity relation. A fundamental deriva- 
tion of scattering similarity involves consideration of the angular flux, I,+, at each 
point in the medium. @ is a solution of the monoenergetic, or single energy group, 
neutral particle transport equation, which can be written [18] as 

is + fl .VqI + Z,(r) $(r, R, t) = s(r, 0, t) + J4, $(r, a’, t) Z,(r, X2’ + Cl) dn’. 

(1) 
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In Eq. (1 ), the angular flux and general source term, t/j and s, generally have spatial, 
angular, and time dependence, r, a, t. The total interaction cross section, C,(r), is 
the sum of the absorption and scattering cross section, C,(r) and z,(r), while 
C, (r, a’ + a) is the angular scattering cross section. The exclusion of energy 
dependence from Eq. (1) implies either elastic scattering or that the angular flux 
and interaction cross sections are energy averaged [18]. 

Denote by pO the cosine of the scattering angle between the incident particle 
direction, SL’, and the scattered direction, C&. Equation (1) can then be rewritten as 

i $ + 51 . VW - s(r, Q t) + Z(r, Q t) = 0, (2) 

where 

Z(r, Q, t) = C,(r) Il/(r, Q, t) + Z,(r) 
[ 

Il/(r, Iz, t) -I,, +(r, Cl’, t)fy dn’] (3) 

andf(r, po) is the PDF for pO. 
Suppressing r and t dependence for notational convenience only and with no loss 

in generality, it is clear from Eq. (2) that any ,Yz, C,*, and f*(po) can be equiv- 
alently substituted for C,, ,Ys, and f(pO) in Eq. (3) provided the quantity Z(n) 
remains invariant. The exact equivalence requirement is thus 

To explicitly relate the original and substituted parameters, expand the angular 
flux and angular scattering PDFs using spherical harmonics and Legendre 
functions [ 193, respectively, as follows: 

v+)= f i amn KY4 0 (5) 
lt=Om=-II 

f(Po)=i~o (y)&pj(PO) 
j-*(/Jo) = j$o ( y) fi*pi(PO). 

(6) 

(7) 

The expansion coefficients fj and j-7 can be formally calculated as Legendre 
moments of f(po) and f*(po). Substitution of Eqs. (5)-(7) into Eq. (4), and 
simplification using the addition theorem and orthogonality properties (see 
Appendix 1) results in the following equivalence requirement: 

amnCCs(l -fJ - ZYl -ft) + PO - C)l = 0, n 2 0. (8) 
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Note that aoO represents the scalar flux, being II/ integrated over all angles, and it 
is always positive. Also, f(p,,) and f*(p,J are PDFs so that f0 =fz= 1.0. Using 
n = 0, Eq. (8) thus implies that C,*= C, and so no alternate absorption cross section 
is possible. In a region where amnz 0 for n > N, the angular flux expansion in 
Eq. (5) can be terminated at n = N. In such a region, the angular flux is Nth order 
anisotropic and the equivalence requirement in Eq. (8) reduces to 

‘c l-f, -- 
,-l-f;’ 

n = 1, . . . . N. (9) 

For each N, Eq. (9) defines a similarity relation. Referring to the class of relations 
in Eq. (9) as a general moments similarity relation, it is clear that increasing N 
increases the order of flux anisotropy admitted by, and thus the accuracy of, the 
moments similarity relation. Unfortunately, this forces Cf and f*(p,J to approach 
C, andf(p,), thereby reducing the computational power of the relation in Monte 
Carlo simulations. Qualitatively, this moments similarity relation should be applied 
by using a high order relation near sources or boundaries, where the angular flux 
is highly anisotropic and a low order relation deep in the medium. 

It is shown in Appendix 2 that as N + co, there can be no distinct similarity 
relation. This proves that, in general, the angular flux corresponds to a unique set 
of interaction parameters. The Nth order moments similarity relation can be 
employed, however, with accuracy limited by the assumption that the angular flux 
is at most Nth order anisotropic. 

The following factors should be considered when selecting Zf and f*(pO) that 
obey the moments similarity relation: 

(1) The similarity ratio, S, defined as the ratio Z,YZ,, must lie between 0 and 
1 and be as small as possible for a given N, in order to maximally reduce simulation 
time. S is the factor by which the moments similarity relation stretches the 
scattering mean free path; 

(2) f*(po) must be positive for all p,, E (- 1, 1) and simple in form so that it 
can be quickly randomly sampled; 

(3) as discussed above, S should generally increase towards unity as N 
increases. High accuracy (large N) and high speed (small S) cannot be maintained 
simultaneously. If attempted, negative values off*&) will result; 

(4) it should be possible to calculate S given only the coefficientsf,, to allow 
easy assessment of the power of the relation prior to its application in a simulation. 

Of the obvious choices for functional forms off*&) (step, linear, quadratic, 
Dirac delta spikes), the following step function satisfies the first three conditions 
and optimally satisfies the fourth condition. Denote the jth of the n - 1 local 
extrema of the nth Legendre function, P,(x), by xjn and the abscissa endpoints at 
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- 1 and 1 by x0,, and x,,, respectively. Next, select as the amplitude of the jth of 
n steps between - 1 and 1, 

wjn(x) = 
Cxjn - xj - *,n) - '3 XE(xj-l,n9 xjn) 
0 

, otherwise. (10) 

Then construct f*(po) for the Nth-order similarity relation from WjN(po) as 
follows: 

f*(Po)= f aj WjN(PO)3 
j=l 

(11) 

The first few functions Wj, are given in Fig. 1. The following properties make the 
Wj. useful as components off*(p,): 

wjn(x) = wn + 1 j,ntxh n>O (124 

i 

1 
Win(X) dx = 1, n>O (12b) -I 

s 1 

Win(x) P,(x) dx = 0, n>O (12c) 
-1 

s 
1 Wjn(x) Win(x) dx = 6gl(xjn -xi - l,n), n>O (12d) -I 

In particular, property (12~) ensures compliance with the second and fourth 
conditions for f*(po) since it renders f% = 0 and so 

S=l-fN. (13) 

The functions W,,(x) can be referred to as orthogonal block functions and the scat- 
tering transformation in Eq. (13) is hereafter referred to as the moments similarity 
relation. It can be shown, using Eqs. (7), (9), and (1 l), that the N coefficients aj can 
be calculated by solving the N x N linear algebraic system 

j$,ajLj.=s-Ffn, n = 0, . . . . N - 1, (14) 

where 

s 
1 

Ljn = WjdX) P”(X) dX* (15) 
-1 

For N ~4, Eq. (14) is easily solved algebraically. 
The moments similarity relation, Eq. (13), is most useful when N is large, such 

as generally arises from highly forward-peaked scattering. When f,,, = 0, as in 
isotropic scattering, the moments similarity relation is useless. 
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FIG. 1. The orthogonal block functions, W,(x). 

CASE STUDY 

The expected reduction in computation time using the moments similarity 
relation can be demonstrated as follows. Suppose that for an infinite homogeneous 
slab of thickness M mean free paths, as in Fig. 2, one employs the actual angular 
scattering PDF in the first Mentrance mean free paths and in the final Mexit mean free 
paths, where higher flux anisotropy occurs. By using the moments similarity 



SIMILARITY RELATIONS 143 

d distance (mfp) 

FIG. 2. Infinite homogeneous test slab of thickness M mean free paths, with variable angular 
scattering PDF, a = 0.99 and for which the moments similarity relation accelerates the simulation in the 
central region. 

relation with similarity ratio, S, at all remaining interior points, the computation 
time should be reduced at least by the factor 

(16) 

As expected, r + 1 as S + 1. The time reduction factor should actually exceed r, 
since the moments similarity relation projects particles well into the entrance and 
exit regions before a switch to the actual angular scattering PDF can be made. As 
an example, for & = 0.98 with Mentrance, Mexit, and A4 of 100, 50, and 2000 mean 
free paths, the N = 1 moments similarity relation would reduce computation time 
by a factor exceeding 10.7. 

The method of scattering equivalence embodied in Eqs. (11) and (13) was first 
tested by simulating the transport of neutral particles normally incident on an 
infinite homogeneous test slab, Fig. 2, with thicknesses M,,t,,,,,, Mexit, and M of 
10, 10, and 30 mean free paths. The simulations were conducted using the standard 
techniques of Monte Carlo simulation, including non-absorption weighting [ 11, 
with no other variance reduction techniques. While homogeneous, the slab is 
divided into three regions. The actual angular scattering PDF, valid for all three 
regions but used only in the first and third regions, is a Henyey-Greenstein function 
[15], with the following functional form: 

j-I.&O) = 0.5( 1 - /I$>( 1 + fi; - 2/i&J -3’2. (17) 

This smooth PDF is characterized by a single parameter, jiO, governing anisotropy, 
and has the useful property that f,, is ,L{. 

The simulation was accelerated only in the central region by sampling using the 
moments similarity relation, consisting of the equivalent angular scattering PDF, 

581/81/1-IO 
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FIG. 3. Henyey-Greenstein continuous angular scattering PDF with j,,= 0.5, and corresponding 
orthogonal block functions for N = 2 (solid square) and N = 4 (dashed square). 

f*(po), and scattering cross section, C f . The actual and replacement angular scat- 
tering PDFs, for jio=0.5, are shown in Fig. 3. The total diffuse transmittance, T, 
and diffuse reflectance, R, were scored for varying scattering anisotropy, central 
region thickness, and N, the order of equivalence. The single scattering albedo, ~1, 
is defined as the fraction, L’JL’,, of interactions that are scatters. For this test, a 
high albedo of a = 0.99 was used since a high albedo normally applies in deep 
penetration calculations. 

The results are presented in Fig. 4 as a comparison of computed R and T values 
with corresponding correct values, calculated by simulation using the actual 
angular scattering PDF. The correct values for j& = 0.5 are T= 0.0151, R = 0.6628 
and for PO = 0.9 are T= 0.1828, R = 0.3806. All observed deviations are quoted as 
a relative error arising from inherent inaccuracy of the scattering equivalence. 
Reflected particles were also scored with spatial discrimination for the above test 
slab with PO = 0.5, 01= 0.99, and N= 2. This test allows assessment of the moments 
similarity relation for scoring accuracy of distributed quantities. The results, 
containing negligible statistical error, are presented in Fig. 5. 

A simulation was also conducted to verify the computational savings afforded by 
the moments similarity relation. The simulation involved normal incidence on an 
infinite homogeneous slab of thickness 100 mean free paths, characterized by a = 1.0 
and a Henyey-Greenstein PDF with fi,, = 0.9. For this case, Eq. (16) predicts a time 
reduction factor exceeding 2.84 when the moments similarity relation of order N = 2 
(R = 0.19) is used in the central 80 mean free paths. The actual time reduction 
factor in the simulation was 4.0. 

Finally, simulations were conducted to check the accuracy of the moments 
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FIG. 4. Relative error in transmittance (T) and reflectance (R) for simulations involving normal 
incidence on the test slab of Fig. 2, with thicknesses IV,,,,,,,,, Mexir and M of 10, 10, and 30 mean free 
paths, and for different orders, N, in the moments similarity relation. The actual angular scattering PDF 
is a Henyey-Greenstein function with & = 0.5 (open circles) and &, = 0.9 (solid circles). The error bars 
represent statistical simulation error. 
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FIG. 5. Total diffusely reflected particles scored as a function of distance, on the test slab face, from 
a line source normally incident on the test slab used to generate Fig. 4, with j&=0.5: using moments 
similarity relation (N = 2) (solid lines); correct values (dashed lines). 
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TABLE I 

Transmittance (T) and reflectance (R) from simulation of normal incidence on thick infinite 
homogeneous slabs with a = 1.0 and a Henyey-Greenstein angular scattering PDF with j,, = 0.9. 

Using moments similarity relation Correct values 
Slab thickness 

(mean free paths) T R Time T R Time 

100 (iv = 2) 0.112 * 0.002 0.888 * 0.002 0.41 0.143 * 0.004 0.857 + 0.004 1.0 
150 (N = 2) 0.075 + 0.002 0.925 f 0.002 0.39 0.100 + 0.001 0.900 rf: 0.001 1.0 
150 (A’= 3) 0.085 f 0.002 0.915 f 0.002 0.42 0.100 _+ 0.001 0.900 & 0.001 1.0 
150 (A’= 4) 0.094 k 0.002 0.906 k 0.002 0.49 0.100 &- 0.001 0.900 + 0.001 1.0 

similarity relation in problems of deep penetration, typically characterized by a high 
albedo with highly forward peaked scattering involving many mean free paths of 
penetration. The simulations were conducted for normal incidence on infinite 
homogeneous slabs of thickness 100 and 150 mean free paths, each with a = 1.0 and 
a Henyey-Greenstein angular scattering PDF with ,ri,, = 0.9. The moments similarity 
relation was used between 20 and 80 mean free paths into the narrower slab and 
between 30 and 130 mean free paths into the thicker slab. Since no published data 
could be found for such deep penetration, the correct values were obtained through 
Monte Carlo simulation without the moments similarity relation and thus have 
associated statistical errors. The results are presented in Table I. 

DISCUSSION 

Inspection of Fig. 4 confirms that scoring accuracy increases with the order, ZV, 
of the moments similarity relation. For a given entrance region, in which the actual 
angular scattering PDF is used, scoring accuracy increases as j& decreases. It 
follows from the results in Fig. 4, for example, that the 10 mean free path entrance 
region of the test slab in Fig. 2 is sufficient if the moments similarity relation with 
N= 2 replaces a Henyey-Greenstein angular scattering PDF with &,=OS. A 
thicker entrance region is required if &, is increased to 0.9 since, in that case, the 
flux anisotropy at 10 mean free paths depth substantially exceeds second order. As 
suggested by the high accuracy obtainable when scoring reflected particles both 
totally, Fig. 4, and with spatial discrimination, Fig. 5, the moments similarity 
relation can accurately reproduce both integral and distributed quantities. 

In general, accuracy using the moments similarity relation is acquired by expand- 
ing the entrance and exit regions in which unbiased sampling is performed, at the 
expense of computation time. For a given accuracy, the required thickness of the 
entrance and exit regions varies approximately inversely with the similarity ratio, S. 
This variation implies, as suggested by the results in Table I, that when ii0 exceeds 
0.9, either thick entrance regions and central regions with low order relations, or 
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thin entrance regions and central regions with high order relations, may be 
required. However the simulation is conducted in the entrance and exit regions, 
maximal reduction of computation time in deep penetration simulations is achieved 
by using a low order relation in the vast central region. 

In practice, the user should perform a prior narrow slab simulation to ensure an 
adequate entrance region for a subsequent lengthy thick slab simulation. The exit 
region thickness can usually be set equal to the entrance region thickness, since flux 
anisotropy would usually be greatest in the entrance region. 

The computational savings afforded by the moments similarity relation depends 
uniquely on the Nth Legendre moment of the actual angular scattering PDF. 
The relation is most effective for highly forward peaked scattering, generally 
characteristic of deep penetration problems. 

The moments similarity relation is easily compared with the existing similarity 
relations presented by van de Hulst [ 151. Based on a matching of diffusion 
exponents and with the caution that similarity relations cannot be trusted to yield 
accurate results, van de Hulst suggests that similarity is generally best achieved by 
maintaining invariant the quantity 

l-a 
q=l-ajj,’ (18) 

This can be achieved by varying any of the three fundamental parameters Z:,, C,, 
p,,. In particular, by leaving Z’, constant while switching to isotropic scattering 
(PO + 0), Eq. (18) reduces to the first-order moments similarity relation (N= 1). 
Equation (18) is therefore valid only when the angular flux is approximately 
linearly anisotropic, defined as the diffusion region. As indicated by Table I, for 
nearly conservative and highly forward peaked scattering, similarity relations more 
accurate than Eq. (18) should be used in simulations near the surface. 

Finally, the moments similarity relation should be applied cautiously in simula- 
tions involving heterogeneities or irregular geometry, since highly anisotropic fluxes 
are normally found near material boundaries. A high order relation should there- 
fore be used near boundaries and, as for the entrance region, a prior simulation in 
simplified slab geometry can suggest minimum distances inside which the scattering 
interaction should be sampled exactly. Indeed, similarity relations may be useless in 
cases where multiple heterogeneities are closely spaced. 

SUMMARY 

The problem of finding valid similarity relations between the various fundamen- 
tal interaction parameters that determine neutral particle transport has been solved 
in this work through considerations of transport equation invariance. A general 
class of similarity relations has been derived based on the result that in a region of 
Nth order flux anisotropy, exact similarity can be achieved by suitably transform- 
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ing the first N + 1 Legendre moments of the angular scattering distribution. Extend- 
ing from this derivation is a proof that a general angular flux with arbitrary 
anisotropy can result from at most one set of physically plausible interaction 
parameters. A particular class of these relations, defined here as the moments 
similarity relation, has been suggested and examined because of its simplicity and 
usefulness in expediting Monte Carlo simulations. Existing similarity relations 
correspond to a first-order moments similarity relation. 

The moments similarity relation most effectively reduces computation time for 
simulations in very thick media involving highly forward peaked scattering. 
Computation time reductions can be predicted prior to simulation and can easily 
exceed a factor of 10. 

It is anticipated that an important application of the moments similarity relation 
will involve simulating the transport of red and infrared light through living tissues, 
since these conditions involve optically thick media with high albedo and highly 
forward peaked scattering. 

APPENDIX 1: DERIVATION OF EQ. (8) 

The equivalence requirement in Eq. (8) is derived from Eq. (4) using Eqs. (5)-(7). 
By the addition theorem [ 193, f&J andf*(p,) are expanded as 

j=l),= -j 

where the bar superscript denotes complex conjugation. Substituting the expansions 
in Eqs. (Al) and (5) into Eq. (4) yields 

n 2n 
X ff y;(ef, y) Fj(ef, y) sin(W) &’ de’. (A21 0 0 

By orthogonality [19], the double integral in Eq. (A2) is just 6,6,, so that 
Eq. (A2) reduces to 

643) 
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Again by orthogonality, Eq. (A3) implies 

%.t-Cs(l -fJ-‘VT1 -fX)+V,-Z)l =o (A4) 

which is Eq. (8) in the text. 

APPENDIX 2 

THEOREM. An angular Jlux, J/, being a solution of the neutral particle transport 
equation, Eq. (1 ), can result from at most one set of physically plausible interaction 
Parameters, z,, ~,,f(kJ. 

Proof: (Spatial and time dependence have been notationally suppressed without 
mathematical loss of generality). Assume that Cz, CF, and f*(p,,) yield the same 
angular flux, I(/, as 
an unlimited order 
must be related by 

a given set of parameters Z,, Zs, and f&). In general, $ has 
of anisotropy. Equations (8) and (9) show that the parameters 

Zf= c, (A51 

W) 

where fn and f X are Legendre expansion coefficients for f (p,,) and f *(CL,,). Substitut- 
ing fX from Eq. (A6) into the Legendre expansion for f *(PO), Eq. (7), results in 

(A7) 

To be physically plausible, f*(po) must be nonnegative, implying, Eq. (A7), that 
Zf> Z,. Furthermore, if scattering is governed by Z:,* and f *(PO), Eq. (A7) shows 
that only the fraction C,/C,* of scatters under f *(p,-,) occur at angles other than 0, 
effectively changing Zf to Z:, in any calculation. Thus, practically, ,?Zf= Z:,, and so 
f*(po) = f(po), completing the proof. Alternatively, Eq. (A7) may be viewed as a 
trivial similarity relation of no practical utility. 
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